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 We are attempting to understand the behavior of asteroids entering the atmosphere and with describing their diverse fracture processes as part of an effort to understand their

atmospheric passage and impact hazard

« Among the uncertainties required for this task are the physical properties of the incoming objects [1] and their fracture mechanics [2,3]

* Strength of meteorites plays an important role in determining the outcome of impact events in which a meteorite is the impactor [4]

* Meteorites come from the surfaces of asteroids and their physical properties are determined to a large extent by the cratered history of the source asteroid (see central figure)
* Meteorites in the Natural History Museums, Vienna (all classes) and London (L & H chondrites) were examined, and fracture patterns in selected individuals were imaged
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e Certain fracture mechanisms dominate, for a given class of meteorite (Coarse Irons —along kamacite grain boundaries, Fine irons
with large crystals — along crystal boundaries, Fine irons — fragmented randomly, Ordinary chondrites — most think veins with no

Source:Koeberl, C., 1997 [5]
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CONCLUSIONS

obvious orientation, Others have thin veins with a point of weakness, and Occasionally brick-work patterns).

* Considerable variation winthin class expected

* Our next tasks will be: (1) Further understand the mechanisms of various types of fractures, (2) Model them numerically, and

(3)Investigating how these fractures scale to their parent asteroids
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